IBS Italy

International Biometric Society - Italian region

Research fellowship @UniSR Milano

A call is open for an annual research fellowship in SECS-S / 01 with deadline 20 December 2019 at Vita-Salute San Raffaele University. The call is available at the link:

https://www.unisr.it/attachments/DR_6224_2019/da3ee0ee-c6f5-4632-a4ed-f64536fee107/ca4fa10d-c1ad-4b66-9ca5-142b84de73fc.pdf

The research is in the scope of a broad relationship of collaboration that CUSSB has with the Bioengineering group of the Politecnico di Milano for the implementation of advanced methods in the evaluation of emotions (http://pheel.polimi.it/) .

The research fellow will also interact with many research groups of the IRCCS San Raffaele and will take advantage of a wide network of both national and international collaborations. The research funds for the fellowship are available for renewal up to 3 years.

Assegno di ricerca @UniSR Milano

E’ stato aperto il bando per un assegno di ricerca annuale nel settore SECS-S/01 con scadenza il 20 Dicembre 2019 presso l’Università Vita-Salute San Raffaele al link:

https://www.unisr.it/attachments/DR_6224_2019/da3ee0ee-c6f5-4632-a4ed-f64536fee107/ca4fa10d-c1ad-4b66-9ca5-142b84de73fc.pdf

La ricerca rientra nell’ambito di un ampio rapporto di collaborazione che il CUSSB ha da tempo con il gruppo di Bioingegneria del Politecnico di Milano per l’implementazione di metodi statistici avanzati nella valutazione delle emozioni (http://pheel.polimi.it/).

L’assegnista interagirà con la ricerca anche di molti gruppi di biomedicina dell’IRCCS San Raffaele avvelendosi dell’ampia rete di collaborazioni sia a livello nazionale che internazionale. I fondi di ricerca per l’assegno sono disponibili per un rinnovo fino a 3 anni.

28° CORSO SIB DI METODOLOGIA STATISTICA

Si ripete anche quest’anno una delle iniziative più gradite tra quelle organizzate dalla Società Italiana di Biometria, (IBS – Italian Region).

Giunto alla sua 28° edizione, il CORSO DI METODOLOGIA STATISTICA PER LA RICERCA BIOLOGICA DI BASE ED APPLICATA si terrà a Gargnano nella splendida cornice di Palazzo Feltrinelli, sulle rive del lago di Garda, dal 18 al 22 novembre 2019.

Si tratta di un corso residenziale coordinato dal collega Federico Ambrogi responsabile delle iniziative didattiche della SIB. Da anni il corso rappresenta un appuntamento di successo sia per gli operatori di area biomedica che vogliano approfondire tematiche di Statistica medica con gli esperti del settore, sia per giovani statistici che si vogliano avvicinare alla disciplina della Biostatistica.

Il primo corso è dedicato alla Statistica descrittiva, inferenza e modelli statistici con R, mentre il secondo al disegno sperimentale e pianificazione di uno studio.

I corsi proposti sono rivolti a laureati in discipline scientifiche. Il Corso 1, Statistica descrittiva, inferenza e modelli statistici con R, si propone di introdurre gli studenti alle principali tecniche statistiche per le applicazioni in campo biologico e, più in generale, nell’ambito delle scienze della vita: verranno presentate le tecniche di modellistica standard, il modello lineare generalizzato e alcune soluzioni per i problemi con bassa numerosità campionaria e variabili non normali. Il Corso 2, disegno sperimentale e pianificazione di uno studio, è dedicato alle tecniche per il disegno e la pianificazione degli esperimenti. Verranno trattati esempi pratici nei diversi ambiti della biostatistica.

I corsi hanno carattere residenziale e prevedono attività teorico-pratiche e lavoro di gruppo. Si articolerà in lezioni frontali ed esercitazioni al computer (software R).

Le quote d’iscrizione sono le seguenti:

Corso Iscritto SIB Non iscritto SIB
Corso 1 230 € 300 €
Corso 2 150 € 220 €
Corsi 1+2 380 € 450 €

Il form per l’iscrizione è raggiungibile a questo link

STATISTICALPS 2020

Also this year the IBS Italian region promotes the Statisticalps course. In this post you can find the first available details.

***********************************************************************

*– STATISTICALPS: course on medical statistics in the Alps –*

************************************************************************

We are pleased to announce that the 9th edition of the STATISTICALPS residential course will be a “Winter edition” – 6-11 September 2020, Ponte di Legno (Brescia, Italy).

* — Instructors –*

Richard Cook, Professor of Statistics in the Department of Statistics and Actuarial Science at the University of Waterloo in Canada http://www.math.uwaterloo.ca/~rjcook/

Daniel Farewell, Reader of Statistics in the School of Medicine at the Cardiff University in UK https://www.cardiff.ac.uk/people/view/123049-farewell-daniel

************************************************************************

THE ANALYSIS OF LONGITUDINAL AND LIFE HISTORY DATA

This course will provide an introduction to statistical methods for the analysis of longitudinal and life history data. An emphasis will be given to the kinds of data arising in epidemiology and public health research, with some issues being specific to the analysis of data from clinical studies.

The course will begin with a focus on common approaches for the analysis of repeated measurements from individuals over common scheduled assessment times, including mixed effects models, generalized estimating equations, and autoregressive models. Models and methods will then be discussed for the analysis of life history data obtained from continuous observation of individuals who are subject to right-censoring.

Following an introduction to survival analysis, methods or the analysis of recurrent event and multistate data will be covered. When data are only available from individuals at intermittent clinic visits, the underlying processes of interest are incompletely observed. Strategies for dealing with such data will be discussed for longitudinal marker processes, failure time processes and multistate models.

The assumptions justifying the various approaches to analysis will be highlighted, and the interpretation of covariate effects and other possible estimands will be emphasized. Recurring themes will include robustness, the implications of a dependence between the longitudinal or life history process and the observation process (i.e. missing data, censoring and informative observation mechanisms), and causal inference. Substantive examples from medical science will be used throughout the course to motivate the methods and illustrate the different interpretations given to estimates of intervention and other covariate effects. R code and selected output will be provided in worked examples.

************************************************************************

A detailed program with fees and deadlines can be found in the brochure:

You can email us at statisticalps@unimib.it 

You can also follow us on

Facebook https://www.facebook.com/Statisticalps-Course-on-Medical-Statistics-9th-edition-2243932959157446/

Twitter @StatisticAlps

STATISTICALPS 2020

Anche quest’anno la SIB promuove il corso Statisticalps. In calce l’annuncio del corso e le prime informazioni disponibili.

***********************************************************************

*– STATISTICALPS: course on medical statistics in the Alps –*

************************************************************************

We are pleased to announce that the 9th edition of the STATISTICALPS residential course will be a “Winter edition” – 2nd-5rd March 2020, Ponte di Legno (Brescia, Italy).

* — Instructors –*

Richard Cook, Professor of Statistics in the Department of Statistics and Actuarial Science at the University of Waterloo in Canada http://www.math.uwaterloo.ca/~rjcook/

Daniel Farewell, Reader of Statistics in the School of Medicine at the Cardiff University in UK https://www.cardiff.ac.uk/people/view/123049-farewell-daniel

************************************************************************

THE ANALYSIS OF LONGITUDINAL AND LIFE HISTORY DATA

This course will provide an introduction to statistical methods for the analysis of longitudinal and life history data. An emphasis will be given to the kinds of data arising in epidemiology and public health research, with some issues being specific to the analysis of data from clinical studies.

The course will begin with a focus on common approaches for the analysis of repeated measurements from individuals over common scheduled assessment times, including mixed effects models, generalized estimating equations, and autoregressive models. Models and methods will then be discussed for the analysis of life history data obtained from continuous observation of individuals who are subject to right-censoring.

Following an introduction to survival analysis, methods or the analysis of recurrent event and multistate data will be covered. When data are only available from individuals at intermittent clinic visits, the underlying processes of interest are incompletely observed. Strategies for dealing with such data will be discussed for longitudinal marker processes, failure time processes and multistate models.

The assumptions justifying the various approaches to analysis will be highlighted, and the interpretation of covariate effects and other possible estimands will be emphasized. Recurring themes will include robustness, the implications of a dependence between the longitudinal or life history process and the observation process (i.e. missing data, censoring and informative observation mechanisms), and causal inference. Substantive examples from medical science will be used throughout the course to motivate the methods and illustrate the different interpretations given to estimates of intervention and other covariate effects. R code and selected output will be provided in worked examples.

************************************************************************

A detailed program with fees and deadlines can be found in the brochure:

You can email us at statisticalps@unimib.it 

You can also follow us on

Facebook https://www.facebook.com/Statisticalps-Course-on-Medical-Statistics-9th-edition-2243932959157446/

Twitter @StatisticAlps

IBS Italy © 2016-2018 email:info@ibs-italy.org